

ARR/PPN/C/2781.01

20th July 2017

Lioncourt Homes

Assessment of noise at the land at Tatenhill Lane, Branston, Burton Upon Trent, DE14 3EZ proposed residential development P/2017/01110 Received 29/08/2017

Prepared for :-

Lioncourt Homes Lioncourt House 3 Apex Park Wainwright Road Warndon Worcester WR4 9FN

Prepared by :-

Andrew Raymond

CONTENTS

- 1.0 SUMMARY
- 2.0 INTRODUCTION

3.0 ASSESSMENT STANDARDS

- 3.1 NPPF, NPSE and NPPG
- 3.2 BS8233/WHO Guide
- 3.3 Local Authority

4.0 GUIDE TO MODELLING

5.0 SURVEY DETAILS

- 5.1 Site Times and Personnel
- 5.2 Instrumentation
- 5.3 Measurement Positions
- 5.4 Survey Conditions

6.0 RESULTS AND DISCUSSIONS

- 5.1 Basic Results
- 5.2 Assessment
- 5.3 Mitigation

7.0 CONCLUSIONS/RECOMMENDATIONS

Appendix 1: Definition of Acoustic Terms Appendix 2: Measurement and Calculation Details

1.0 SUMMARY

The site is a little noisy, due almost entirely to traffic on the A38. Daytime levels are slightly higher than during our assessment in 2007 and night time levels are slightly lower, but overall conclusions and recommendations are unchanged.

During the 2007 application process, it was queried by planners whether there was any significant impact from storage yard to the southeast. We confirmed at the time that there was essentially zero impact and we can confirm the same again here. There will inevitably be activity at times but we understand this to be infrequent and short-lived.

BS8233 internal criteria for "reasonable" conditions are easily met with partly open windows apart from living rooms closest to, and in full view of, the A38. BS8233 internal criteria for "desirable" conditions are easily met with closed windows and open non-acoustic vents. Criteria for desirable conditions are easily met with basic 1.8m garden fencing.

P.Durch

A R Raymond

P J Durell

2.0 INTRODUCTION

ADC was asked to carry out an independent assessment of the above site with regards to its suitability for residential development from a noise perspective.

This report begins by summarising assessment standards and, where appropriate, discusses alternative interpretations.

After a brief statement of survey details we discuss basic results and the resulting assessment, along with any mitigation which might be implied. We sum-up and conclude at the end, along with brief recommendations.

3.0 ASSESSMENT STANDARDS

3.1 <u>NPPF, NPSE and NPPG</u>

The National Planning Policy Framework (NPPF), the Noise Policy Statement for England (NPSE) and the National Planning Practice Guidance (NPPG) provide nothing in the way of quantitative criteria but instead provide general policy aims and statements and some guidance on how certain situation can be interpreted.

The NPPF's main statement on noise is to be found in paragraph 123:-

- 123. Planning policies and decisions should aim to:
 - avoid noise from giving rise to significant adverse impacts on health and quality of life as a result of new development;
 - mitigate and reduce to a minimum other adverse impacts on health and quality of life arising from noise from new development, including through the use of conditions;
 - recognise that development will often create some noise and existing businesses wanting to develop in continuance of their business should not have unreasonable restrictions put on them because of changes in nearby land uses since they were established; and
 - identify and protect areas of tranquillity which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason.

The NPPF refers to the NPSE which sets out the following aims:-

- 1. avoid significant adverse impacts on health and quality of life;
- 2. mitigate and minimise adverse impacts on health and quality of life; and
- 3. where possible, contribute to the improvement of health and quality of life.

It also introduces the concepts of:

• NOEL – No Observed Effect Level. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.

- LOAEL Lowest Observed Adverse Effect Level. This is the level above which adverse effects on health and quality of life can be detected.
- SOAEL Significant Observed Adverse Effect Level. This is the level above which significant adverse effects on health and quality of life occur.

SOAEL is clearly something the policy seeks to avoid in aim 1. Aim 2 represents situations between SOAEL and LOAEL, and seeks to minimise and mitigate the effects.

The NPPG section on noise adds some further detail, much of it reproducing the NPPF and NPSE, but some useful qualitative guidance is provided in a table as reproduced below.

Perception	Examples of Outcomes	Increasing Effect Level	Action
Not noticeable	No Effect	No Observed Effect	No specific measures required
Noticeable and not intrusive	Noise can be heard, but does not cause any change in behaviour or attitude. Can slightly affect the acoustic character of the area but not such that there is a perceived change in the quality of life.	No Observed Adverse Effect	No specific measures required
		Lowest Observed Adverse Effect Level	
Noticeable and intrusive	Noise can be heard and causes small changes in behaviour and/or attitude, e.g. turning up volume of television; speaking more loudly; where there is no alternative ventilation, having to close windows for some of the time because of the noise. Potential for some reported sleep disturbance. Affects the acoustic character of the area such that there is a perceived change in the quality of life.	Observed Adverse Effect	Mitigate and reduce to a minimum
		Significant Observed Adverse Effect Level	
Noticeable and disruptive	The noise causes a material change in behaviour and/or attitude, e.g. avoiding certain activities during periods of intrusion; where there is no alternative ventilation, having to keep windows closed most of the time because of the noise. Potential for sleep disturbance resulting in difficulty in getting to sleep, premature awakening and difficulty in getting back to sleep. Quality of life diminished due to change in acoustic character of the area.	Significant Observed Adverse Effect	Avoid
Noticeable and very disruptive	Extensive and regular changes in behaviour and/or an inability to mitigate effect of noise leading to psychological stress or physiological effects, e.g. regular sleep	Unacceptable Adverse Effect	Prevent

Perception	Examples of Outcomes	Increasing Effect Level	Action
	deprivation/awakening; loss of appetite, significant, medically definable harm, e.g. auditory and non-auditory		

It also makes the point that the subjective nature of noise means that there is not a simple relationship between noise levels and the impact on those affected. This will depend on how various factors combine in any particular situation, including the level of the noise in absolute terms and how it might compare with the underlying background noise, the impulsiveness or intermittence pattern of the noise, its spectral content, and the time of day. It discusses in very general terms the issues to consider when introducing noise sources to existing noise sensitive area, new residential development in areas affected by existing noise sources (most of which have their own specific guidance, such as BS4142, BS8233, etc.) and the potential impact on wildlife.

3.2 BS8233/WHO Guide

BS8233 was updated in March 2014. Quantitatively, however, the design criteria are little changed – just expressed differently to reduce ambiguity in certain situations. The criteria are very similar to those of the WHO Guide to Community Noise

Table 4 of BS8233 gives the desirable criteria for indoor ambient noise levels for dwellings as follows:-

Activity	Location	07:00 to 23:00	23:00 to 07:00
Resting	Living room	35 dB L _{Aeq,16hour}	-
Dining	Dining room/area	40 dB L _{Aeq,16hour}	-
Sleeping (daytime resting)	Bedroom	35 dB L _{Aeq,16hour}	30 dB L _{Aeq,16hour}

Note that the standard accepts the widely used rule of thumb that, for a partly open window, the levels just outside will be 15dB higher than those just inside. This brings us to an external equivalent of the above table, as follows:-

Activity	Location	07:00 to 23:00	23:00 to 07:00
Resting	Living room	50 dB L _{Aeq,16hour}	-
Dining	Dining room/area	55 dB L _{Aeq,16hour}	-
Sleeping (daytime resting)	Bedroom	50 dB L _{Aeq,16hour}	45 dB L _{Aeq,16hour}

It goes on to state that, where necessary, the criteria can be relaxed by up to 5 dB and still achieve reasonable conditions. Note that the new version does not explicitly state criteria for bedroom noise in terms of dB L_{Amax} .

Garden area criteria are unchanged with 50 dB L_{Aeq} and 55 dB L_{Aeq} being considered desirable and reasonable respectively.

Note that the new version of BS8233 more explicitly specifies the assessment periods as 16 hour and 8 hour for daytime and night time respectively.

3.3 Local Authority

As far as we are aware no planning conditions have been proposed.

4.0 GUIDE TO MODELLING

Full details of calculations are given in Appendix 2. The basic approach is as follows.

- 1. The external noise break-in is based on the level of external noise just outside the façade(s), the area of the façade(s), the sound insulation properties of the façade(s) and the internal absorption of the room.
- 2. The first input to the calculation process is the area of the exposed façade. Where more than one façade is exposed, then they can all be entered. The room depth is also entered so as to derive the room volume. Where the room is not a straight forward rectangular shape, an "effective depth" is sometimes entered so as to derive the approximate room volume. Judgement may occasionally be used if the room is not simple, such as a very unusual shape or a multi-use room such as a through-kitchen/dining room/living room, or studio-style area.
- 3. The reverberation time (RT) is entered. Usually this is a standardised 0.5 seconds and represents the absorption properties of the room.
- 4. Two corrections result from the above inputs. Firstly, we have the Area Correction. Put simply, the greater the exposed area, the more noise will break in. The correction is 10 x log(Effective Area) and is usually a positive number. Note that the "Effective Area" takes account of the method of modelling vents see later. The Room Correction takes account of the room absorption (more absorption reduces the noise) and the room volume (a larger volume disperses, and so reduces, the noise). The correction is 10 x log(RT/0.163/Volume) and is usually a negative number.
- 5. These corrections, together with the sound insulation properties of the façade(s) give us the basic outside-to-inside level difference. The sound insulation properties of the façade(s), known as the Sound Reduction Index (SRI or just R) are effectively the sound insulation of 1m² of material (apart from vents see later). Of course, a façade is usually made up of more than one element windows and walls for instance. The overall SRI or R is referred to as the Composite SRI or composite R and is related to the SRI or R or the individual elements and their respective areas. SRI or R figures are usually based on laboratory tests and therefore somewhat idealised.

- 6. An additional complication is that performance data for vents is generally standardised to 10m². The area of a vent is therefore usually entered as 10m², even though its actual area will usually be nowhere near that big.
- 7. So, the composite SRI or R, combined with the area and room corrections gives us the basic level difference to be expected under perfect (laboratory) conditions. However, actual site conditions are affected by workmanship, which can never be guaranteed to be perfect, and flanking paths (noise paths other than straight through the façade(s)). We add a generous 5 dB allowance for this.
- 8. The process is repeated in octave bands across the frequency range to derive the predicted internal levels.

5.0 SURVEY DETAILS

5.1 Site Times and Personnel

The measurements were carried out by Mark Pickering of ADC Acoustics.

Daytime measurements were carried out on 22nd and 23rd June between approximately 23:00 and 01:00 to represent what was likely to be a noisier time of night and 07:00 to 09:00 the following morning to represent rush hour as a worst case assumption for daytime levels.

5.2 Instrumentation

Instrumentation used was a Rion N28. This is a precision grade sound level meter which holds a current calibration certificate and which was field-calibrated before and after the measurements with no drift noted. The meter was set up to measure 30 minute samples in terms of dB L_{eq} , dB L_{max} and dB L_{90} in overall A-weighted terms, and in octave bands across the frequency range. See Definition of Acoustic Terms in Appendix 1.

5.3 <u>Measurement Positions</u>

The main measurement positions were as shown on the following plan.

The microphone was 1.5 m above ground and well away from other reflecting surfaces.

5.4 Survey Conditions

We have no reason to believe that the conditions we found on the survey were anything other than representative of normal conditions.

Weather conditions were as follows :-

Rain	:	none, dry roads
Cloud	:	80 to 100%
Temperature	:	15 to 16 Celsius
Wind	:	negligible

6.0 RESULTS AND DISCUSSIONS

The noise was entirely dominated by traffic on the A38. As we found in our 2007 assessment, there was noise at all from the Storage yard tithe southeast. There will inevitably be activity at times but we understand this to be infrequent and short-lived.

6.1 Basic Results

Full details are given in Appendix 2. A summary is as follows:-

Time	Position	Index	dB(A)
		Leq	57
	1	Lmax	71
Overall Rush		L90	54
Hour		Leq	54
	2	Lmax	63
		L90	52
		Leq	49
	1	Lmax	56
Overall		L90	46
Early Night		Leq	46
	2	Lmax	58
		L90	42

6.2 Assessments

The above results give the following assessments.

In terms of BS8233, we are mainly concerned with the dB(A) L_{eq} values, or the dB L_{Aeq} levels. See definition of Acoustic terms in Appendix 1. The new version of BS8233 no longer has night time criteria in terms of dB(A) L_{max} values, or dB L_{Amax} values, but some local authorities still like to see them presented.

The measured levels appear to suggest that sound insulation will need to be designed to control external noise break-in as follows:

Environment	Position	Required Reductions			
Environment	FOSILION	Desirable	Reasonable		
Living Rooms	1	22 dB	17 dB		
Living Rooms	2	19 dB	14 dB		
Bedrooms	1	19 dB	14 dB		
Dedioonis	2	16 dB	11 dB		
Outdoor Living Areas	1	7 dB	2 dB		
Outdoor Living Areas	2	4 dB	0 dB		

Note, of course, that these assertions are based upon the assumption that night-time noise levels are represented by measurements around midnight and that daytime noise levels are represented by measurements around rush hour. In other words, they should represent a worst-case.

6.3 Mitigation

The reductions suggested for outdoor living areas will easily be achieved with the most basic 1.8m garden fencing and any screening provided by site layout. Garden fencing will also screen rear ground floor rooms and the screening provided by site layout will also benefit all rooms other than those directly facing the A38. However, this is not built into the calculations below.

A partly open window can be expected to provide about 15 dB reduction. This will be sufficient to achieve BS8233 criteria for "Reasonable" conditions to all plots apart from living rooms closets to and directly facing the A38. Criteria for BS8233 "Desirable" conditions will need closed windows. This implies that ventilation will be required such that occupants have the realistic option of keeping windows shut. This can be achieved using active or passive ventilation which provides a suitable sound insulation or a whole house-type system which does not require any wall or window vents.

A summary of mitigation (or building elements assumed in our calculations) is as follows:-

Façade	Room Type	Make-Up on Which Calculations are Based
		Walls: Traditional Masonry
	Living Room	Glazing: Basic thermal eg. 4+20+4
Position 1		Vents: Non-acoustic eg. Simon Airstrip 300
F USILIUIT T		Walls: Traditional Masonry
	Bedroom	Glazing: Basic thermal eg. 4+20+4
		Vents: Non-acoustic eg. Simon Airstrip 300
		Walls: Traditional Masonry
	Living Room	Glazing: Basic thermal eg. 4+20+4
Position 2		Vents: Non-acoustic eg. Simon Airstrip 300
F OSITION 2		Walls: Traditional Masonry
	Bedroom	Glazing: Basic thermal eg. 4+20+4
		Vents: Non-acoustic eg. Simon Airstrip 300

Full calculation details are shown in Appendix 2 and a summary predicted internal noise levels is as follows:-

Façade	Time	Index	dB(A)
	Rush	Leq	35
Position 1	Night	Leq	28
	Night	Lmax	36
	Rush	Leq	32
Position 2	Night	Leq	25
	Night	Lmax	38

All BS8233 criteria for "Desirable" conditions are met. Of course, these assessments are very robust as they use what are likely to be the noisier times of day and night, assume all facades have an unrestricted lines of site to the main sources and that the development itself will not provide any screening to its own properties.

7.0 CONCLUSIONS/RECOMMENDATIONS

BS8233 internal criteria for "reasonable" conditions are easily met with partly open windows apart from living rooms closest to, and in full view of, the A38. BS8233 internal criteria for "desirable" conditions are easily met with closed windows and open non-acoustic vents. Criteria for desirable conditions are easily met with basic 1.8m garden fencing.

The calculations are based on basic 1.8m fencing to rear gardens, and 4+20+4 thermal double glazing and non-acoustic vents (assumed open) to habitable rooms. This is essentially concluding that no specific mitigation is necessary and there should be no need for noise related planning conditions.

Appendix 1

Definition of Acoustic Terms

The Decibel

The decibel is the basic unit of noise measurement and is denoted dB. Technically, it is a means of expressing the difference in noise level between the measured noise and a standard level of noise. Most often the threshold of human hearing is used as the standard reference but is really should be stated. The threshold of human hearing is a sound pressure of 20μ Pa or a sound power of 1pW.

A sound pressure level or SPL should be expressed in dB(re. 20μ Pa). A sound power level or SWL should be expressed in dB(re. 1pW). If the reference levels are omitted, it will often (but not always) be safe to assume that they are referenced to the threshold of human hearing.

A-Weighting and dB(A)

The human hearing system responds differently to different frequencies. The A-weighting system takes account of this by emphasising mid and high frequencies more than low frequencies to given an overall level. An A-Weighted noise level, therefore, reflects the way normal, healthy hearing would perceive the overall level of the noise. The basic unit is dB(A), although other systems of expressing an A-weighted level are discussed below.

Other weighting systems, such as C-Weighting, denoted dB(C), reflect the human hearing system's response at higher noise levels.

Equivalent Continuous Sound Level, Leq

This is a kind of mean noise level.

The unit is dB L_{eq} . For A-weighted levels the unit is dB(A) L_{eq} or, in more modern units, dB L_{Aeq} . The Noise at Work Regulations use $L_{eq(s)}$ which refers to a sample level.

Maximum Level, Lmax

This is the maximum level reached (usually for a fraction of a second) in the measurement period.

The unit is dB L_{max} . For A-weighted levels the unit is dB(A) L_{max} or, in more modern units, dB L_{Amax} .

Statistical (Percentile) Levels, Ln

During a measurement of fluctuating noise, it is often useful to establish the levels exceed for a percentage of the time. L_n is the index representing the level exceeded for n% of the measurement period.

The unit is dB L_n . For A-weighted levels, the unit is dB(A) L_n or, in more modern units, dB L_{An} .

Common examples are as follows :-

dB L_{A90} is the A-weighted level exceeded for 90% of the time and is often used to describe the underlying background noise.

dB L_{A50} is the A-weighted level exceed for 50% of the time. Mathematically, it is the median, another kind of average.

dB L_{A10} is the A-weighted level exceeded for 10% of the time and has traditionally been used to describe the intermittent highs in the noise climate such as passing cars or aircraft.

Frequency Analysis

Here the audible frequency range is divided up into bands and the noise level is expressed in each frequency band form low pitches to high pitches.

Octave Band analysis is where the frequency range is divided into 8 bands from 63 Hz to 8kHz, or sometimes into 10 bands from 31.5 Hz to 16kHz.

1/3 Octave Band analysis provides more detailed subdivision into 24 bands from 50 Hz to 10kHz, or sometimes into 30 bands from 20Hz to 20kHz.

Narrow Band analysis takes this further with the possibility of many thousands of bands, possibly only 1Hz wide, or even less.

In all types of frequency analysis, the level in each band can be expressed in terms of L_{eq} , L_{max} , L_n , etc. as defined above.

Appendix 2

Measurement and Calculation Details

Daytime Measurements

Position	Time	Index	dB(A)	63	125	250	500	1k	2k	4k	8k
FUSILION	TIME		58		-	230 46			2r 47		33
	07.00	Leq		59	50		53	56		39	
	07:00	Lmax	71	74	66	60	65	70	59	60	54
		L90	54	51	43	42	49	53	44	30	19
		Leq	57	58	50	46	52	55	46	38	33
	07:30	Lmax	66	73	67	58	63	63	56	56	52
1		L90	54	50	43	41	49	52	43	30	20
		Leq	57	61	51	46	52	55	48	41	30
	08:00	Lmax	71	75	69	64	70	68	59	56	52
		L90	54	53	44	41	48	52	45	32	18
		Leq	57	60	49	45	52	55	47	43	37
	08:30	Lmax	71	73	65	57	66	68	60	64	61
		L90	54	53	43	41	48	52	45	31	18
		Leq	55	57	47	42	50	53	44	37	31
	07:00	Lmax	61	72	63	53	57	58	50	53	49
		L90	52	52	43	39	47	51	42	30	22
		Leq	54	55	48	42	49	52	44	35	29
	07:30	Lmax	61	64	61	54	57	57	51	52	45
2		L90	52	52	43	39	47	50	41	29	20
2		Leq	55	58	49	44	50	53	45	38	31
	08:00	Lmax	65	67	63	59	64	59	54	54	52
		L90	53	54	45	41	47	51	44	31	20
		Leq	54	58	47	43	50	52	45	36	29
	08:30	Lmax	63	66	59	58	58	60	52	49	44
		L90	52	54	44	40	47	50	43	31	20

Night Time Measurements

Position	Time	Index	dB(A)	63	125	250	500	1k	2k	4k	8k
		Leq	49	55	44	38	45	48	38	23	17
	23:00	Lmax	56	64	53	46	53	54	45	35	33
		L90	47	47	37	34	42	45	35	20	15
		Leq	49	54	42	37	46	48	38	22	15
	23:30	Lmax	56	63	51	45	53	54	44	30	19
1		L90	46	46	36	33	42	45	35	19	15
		Leq	49	53	42	41	46	47	38	21	15
	00:00	Lmax	56	63	51	50	53	54	43	28	15
		L90	46	45	36	35	42	44	35	18	15
		Leq	48	53	40	36	45	46	36	20	15
	00:30	Lmax	56	63	50	44	54	53	43	28	19
		L90	44	45	34	32	41	43	33	17	15
	23:00	Leq	46	52	40	35	42	45	34	19	13
		Lmax	55	62	50	48	52	54	42	36	30
		L90	43	46	36	31	38	41	32	16	12
		Leq	46	51	39	34	42	45	34	18	12
	23:30	Lmax	55	60	48	44	51	54	43	35	26
2		L90	43	45	35	31	38	41	31	15	12
2		Leq	46	50	39	39	41	44	33	18	12
	00:00	Lmax	55	62	50	56	50	52	42	31	21
		L90	42	45	35	31	37	41	30	14	12
		Leq	45	51	38	33	41	43	33	22	18
	00:30	Lmax	63	61	45	43	57	61	53	46	41
		L90	40	46	35	30	36	39	29	15	12

Measurement Summary

Time	Position	Index	dB(A)	63	125	250	500	1k	2k	4k	8k
		Leq	57	59	50	46	52	55	47	40	34
	1	Lmax	71	74	67	61	67	68	59	60	57
Overall Rush		L90	54	52	43	41	49	52	44	31	19
Hour		Leq	54	57	48	43	50	52	45	37	30
	2	Lmax	63	69	62	57	60	59	52	52	48
		L90	52	53	44	40	47	51	43	30	20
		Leq	49	54	42	38	45	47	37	22	16
	1	Lmax	56	63	51	47	53	54	44	31	27
Overall		L90	46	46	36	34	42	44	35	19	15
Early Night		Leq	46	51	39	36	41	44	34	19	14
	2	Lmax	58	61	49	51	53	57	48	41	35
		L90	42	46	35	31	37	41	30	15	12

Required Reductions fro BS8233 Guidelines

Position	Required Reductions						
FUSILION	Desirable	Reasonable					
1	22 dB	17 dB					
2	19 dB	14 dB					
1	19 dB	14 dB					
2	16 dB	11 dB					
1	7 dB	2 dB					
2	4 dB	0 dB					
	1 2 1	Position Desirable 1 22 dB 2 19 dB 1 19 dB 2 16 dB 1 7 dB					

Mitigation Summary

Façade	Room Type	Make-Up on Which Calculations are Based
		Walls: Traditional Masonry
	Living Room	Glazing: Basic thermal eg. 4+20+4
Position 1		Vents: Non-acoustic eg. Simon Airstrip 300
F OSILIOIT T		Walls: Traditional Masonry
	Bedroom	Glazing: Basic thermal eg. 4+20+4
		Vents: Non-acoustic eg. Simon Airstrip 300
		Walls: Traditional Masonry
	Living Room	Glazing: Basic thermal eg. 4+20+4
Position 2		Vents: Non-acoustic eg. Simon Airstrip 300
FOSILION 2		Walls: Traditional Masonry
	Bedroom	Glazing: Basic thermal eg. 4+20+4
		Vents: Non-acoustic eg. Simon Airstrip 300

Predicted Summary

Façade	Time	Index	dB(A)	63	125	250	500	1k	2k	4k	8k
	Rush	Leq	35	47	30	28	33	32	23	17	6
Position 1	Night	Leq	28	42	23	22	27	25	15	0	-12
	Nigrit	Lmax	36	51	32	30	35	32	22	9	0
	Rush	Leq	32	45	28	25	30	29	21	13	1
Position 2	Night	Leq	25	39	20	19	23	22	12	-3	-13
	Night	Lmax	38	49	30	34	35	35	26	19	8

Break-in

Position 1											
Living Room			dB(A)	63	125	250	500	1k	2k	4k	8k
Width of Exposed Façade 1	4.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 2	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 3	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 4	0.00	m	-	-	-	-	-	-	-	-	-
Total Exposed Façade Width	4.00	m	-	-	-	-	-	-	-	-	-
Element Height	2.50	m	-	-	-	-	-	-	-	-	-
Room Depth (re. Exposed façade 1)	3.00	m									
Element Area	10.00	m2	-	-	-	-	-	-	-	-	-
Effective Area (ie. with vents)	20.00	m2	-	-	-	-	-	-	-	-	-
Room Volume	30.00	m3	-	-	-	-	-	-	-	-	-
Assumed RT	0.50	S	-	-	-	-	1	-	-	-	-
Element Area Correction			-	13	13	13	13	13	13	13	13
Room Correction 10 x Log (RT/0.163/V)			-	-10	-10	-10	-10	-10	-10	-10	-10
Walls: Traditional Masonry	7.00	m2	-	23	32	41	47	49	53	58	55
Glazing: Basic thermal eg. 4+20+4	3.00	m2	-	15	24	20	25	35	38	35	32
Vents: Non-acoustic eg. Simon Airstrip 300	10.00	m2	-	23	28	26	26	29	29	29	36
Composite SRI	20.00	m2	-	20	28	26	28	32	32	32	37
evel Difference (Reverberant only)				-17	-25	-22	-24	-29	-29	-29	-33
Allowance for flanking/workmanship	5 dB		-	5	5	5	5	5	5	5	5
Predicted Internal Levels	Rush	Leq	35	47	30	28	33	32	23	17	6
	Night	Leq	27	41	23	21	26	24	14	-2	-13
	Night	Lmax	34	51	32	29	33	30	20	8	-1

Position 2		dB(A)	63	125	250	500	1k	2k	4k	8k	
Living Room			UD(A)	05	125	250	500	11	21	47	ON
Width of Exposed Façade 1	4.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 2	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 3	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 4	0.00	m	-	-	-	-	-	-	-	-	-
Total Exposed Façade Width	4.00	m	-	-	-	-	-	-	-	-	-
Element Height	2.50	m	-	-	-	-	-	-	-	-	-
Room Depth (re. Exposed façade 1)	3.00	m									
Element Area	10.00	m2	-	-	-	-	-	-	-	-	-
Effective Area (ie. with vents)	20.00	m2	-	-	-	-	-	-	-	-	-
Room Volume	30.00	m3	-	-	-	-	-	-	-	-	-
Assumed RT	0.50	S	-	-	-	-	-	-	-	-	-
Element Area Correction			-	13	13	13	13	13	13	13	13
Room Correction 10 x Log (RT/0.163/V)			-	-10	-10	-10	-10	-10	-10	-10	-10
Walls: Traditional Masonry	7.00	m2	-	23	32	41	47	49	53	58	55
Glazing: Basic thermal eg. 4+20+4	3.00	m2	-	15	24	20	25	35	38	35	32
Vents: Non-acoustic eg. Simon Airstrip 300	10.00	m2	-	23	28	26	26	29	29	29	36
Composite SRI	20.00	m2	-	20	28	26	28	32	32	32	37
Level Difference (Reverberant only)				-17	-25	-22	-24	-29	-29	-29	-33
Allowance for flanking/workmanship	5 dB		-	5	5	5	5	5	5	5	5
Predicted Internal Levels	Rush	Leq	32	45	28	25	30	29	21	13	1
	Night	Leq	24	39	19	18	22	21	10	-4	-14
	night	Lmax	36	49	29	34	34	33	24	18	7

Position 1			dB(A)	63	125	250	500	1k	2k	4k	8k
Bedroom			UD(A)	03	125	250	500	16	21	4٨	on
Width of Exposed Façade 1	2.70	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 2	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 3	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 4	0.00	m	-	-	-	-	-	-	-	-	-
Total Exposed Façade Width	2.70	m	-	-	-	-	-	-	-	-	-
Element Height	2.50	m	-	-	-	-	-	-	-	-	-
Room Depth (re. Exposed façade 1)	3.00	m									
Element Area	6.75		-	-	-	-	-	-	-	-	-
Effective Area (ie. with vents)	16.75	m2	-	-	-	-	-	-	-	-	-
Room Volume	20.25	m3	-	-	-	-	-	-	-	-	-
Assumed RT	0.50	s	-	-	-	-	-	-	-	-	-
Element Area Correction			-	12	12	12	12	12	12	12	12
Room Correction 10 x Log (RT/0.163/V)			-	-8	-8	-8	-8	-8	-8	-8	-8
Walls: Traditional Masonry	4.95	m2	-	23	32	41	47	49	53	58	55
Glazing: Basic thermal eg. 4+20+4	1.80	m2	-	15	24	20	25	35	38	35	32
Vents: Non-acoustic eg. Simon Airstrip 300	10.00	m2	-	23	28	26	26	29	29	29	36
Composite SRI	16.75	m2	-	21	28	26	27	31	31	31	37
Level Difference (Reverberant only)				-17	-24	-22	-23	-27	-27	-27	-33
Allowance for flanking/workmanship	5 dB		-	5	5	5	5	5	5	5	5
Predicted Internal Levels	Rush	Leq	36	48	31	29	34	33	25	18	6
	Night	Leq	28	42	23	22	27	25	15	0	-12
	Night	Lmax	36	51	32	30	35	32	22	9	0

Position 2			dB(A)	63	125	250	500	1k	2k	4k	8k
Bedroom			UD(A)	03	125	250	500	16	21	41	on
Width of Exposed Façade 1	2.70	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 2	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 3	0.00	m	-	-	-	-	-	-	-	-	-
Width of Exposed Façade 4	0.00	m	-	-	-	-	-	-	-	-	-
Total Exposed Façade Width	2.70	m	-	-	-	-	-	-	-	-	-
Element Height	2.50	m	-	-	-	-	-	-	-	-	-
Room Depth (re. Exposed façade 1)	3.00	m									
Element Area	6.75	m2	-	-	-	-	-	-	-	-	-
Effective Area (ie. with vents)	16.75	m2	-	-	-	-	-	-	-	-	-
Room Volume	20.25	m3	-	-	-	-	-	-	-	-	-
Assumed RT	0.50	S	-	-	-	-	-	-	-	-	-
Element Area Correction			-	12	12	12	12	12	12	12	12
Room Correction 10 x Log (RT/0.163/V)			-	-8	-8	-8	-8	-8	-8	-8	-8
Walls: Traditional Masonry	4.95	m2	-	23	32	41	47	49	53	58	55
Glazing: Basic thermal eg. 4+20+4	1.80	m2	-	15	24	20	25	35	38	35	32
Vents: Non-acoustic eg. Simon Airstrip 300	10.00	m2	-	23	28	26	26	29	29	29	36
Composite SRI	16.75	m2	-	21	28	26	27	31	31	31	37
Level Difference (Reverberant only)				-17	-24	-22	-23	-27	-27	-27	-33
Allowance for flanking/workmanship	5 dB		-	5	5	5	5	5	5	5	5
Predicted Internal Levels	Rush	Leq	33	45	29	26	31	30	22	15	2
	Night	Leq	25	39	20	19	23	22	12	-3	-13
	Night	Lmax	38	49	30	34	35	35	26	19	8